Arc diagrams with arcplot

logo of a chart:Arc

Arcplot is a python library to create arc diagrams. It is a simple and easy to use library to visualize relationships between nodes. This post explains how to create an arc diagram with the arcplot library, how to customize colors, weights, and positions.

Libraries

First, you need to install arcplot with the following command: pip install arcplot (you need Python 3.10 to install it!).

We'll also need the following libraries:

  • pandas for creating a dataframe with our data
import pandas as pd
from arcplot import ArcDiagram

Dataset

Arc diagrams are mainly used to represent networks. Networks are made up of nodes (e.g. people) and edges (relationships between people). The relationship may be a collaboration or a family relationship for example.

In our case, we'll use a simple connection dataset where each row is an edge. It has 4 columns:

  • from: id of the node
  • to: id of the node in relation with from
  • weight: weight of the edge
  • position: boolean used to choose where to plot the arc (see below)
path = 'https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/connections.csv'
df = pd.read_csv(path)

Simplest arc diagram

The easiest way is to create a function that will take the following arguments:

  • df: a pandas dataframe
  • node1: column name of the node
  • node2: column name of the node related to node1
def createArcDiagram(df, node1, node2, edgecolor='black', title='My Diagram'):
    
    # get all the nodes
    nodes = df[node1].unique().tolist() + df[node2].unique().tolist()
    nodes = list(set(nodes))

    # create the diagram
    arcdiag = ArcDiagram(nodes, title)

    # connect the nodes
    for connection in df.iterrows():
        arcdiag.connect(connection[1][node1], connection[1][node2])

    arcdiag.set_custom_colors(['black']*len(nodes))

    # plot the diagram
    arcdiag.show_plot()

createArcDiagram(
    df,
    node1='from',
    node2='to'
)

Custom colors

Thanks to set_background_color() and set_color_map() we can custom the color of the chart. We just have to add those in our function from above:

def createArcDiagram(df, node1, node2, bg_color='white',
                     cmap='viris', title='My Diagram'):
    
    # get all the nodes
    nodes = df[node1].unique().tolist() + df[node2].unique().tolist()
    nodes = list(set(nodes))

    # create the diagram
    arcdiag = ArcDiagram(nodes, title)

    # connect the nodes
    for connection in df.iterrows():
        arcdiag.connect(connection[1][node1], connection[1][node2])

    # custom colors
    arcdiag.set_background_color(bg_color)
    arcdiag.set_color_map(cmap)
    
    # plot the diagram
    arcdiag.show_plot()

createArcDiagram(
    df,
    node1='from',
    node2='to',
    bg_color='#f5e0c4',
    cmap='inferno'
)

Weighed relationships

It's common to have weighed edges in a graph. For example, if edges are collaboration, the weight can be the number of collaboration.

arcplot has a solution for this with the linewidth argument. Once again, let's update our function:

def createArcDiagram(df, node1, node2, weights=None, bg_color='white',
                     cmap='viris', title='My Diagram'):
    
    # get all the nodes
    nodes = df[node1].unique().tolist() + df[node2].unique().tolist()
    nodes = list(set(nodes))

    # create the diagram
    arcdiag = ArcDiagram(nodes, title)

    if not weights:
        df['weights'] = 0.1

    # connect the nodes
    for connection in df.iterrows():
        arcdiag.connect(
            connection[1][node1],
            connection[1][node2],
            linewidth=connection[1][weights]
        )

    # custom colors
    arcdiag.set_background_color(bg_color)
    arcdiag.set_color_map(cmap)
    
    # plot the diagram
    arcdiag.show_plot()

createArcDiagram(
    df,
    node1='from',
    node2='to',
    weights='weights',
    cmap='inferno'
)

Display arcs above OR below

Finally, we can easily decide on which side of the plot each arc will be with the arc_position argument. Let's update one last time our function:

def createArcDiagram(data, node1, node2, weights=None, positions=None,
                     bg_color='white', cmap='viris', title='My Diagram'):

    df = data.copy()
    
    # get all the nodes
    nodes = df[node1].unique().tolist() + df[node2].unique().tolist()
    nodes = list(set(nodes))

    # create the diagram
    arcdiag = ArcDiagram(nodes, title)

    # get positions
    if positions:
        if df[positions].nunique() != 2:
            raise ValueError('positions must have 2 unique values')
        else:
            posMap = {
                df[positions].unique()[0]: 'below',
                df[positions].unique()[1]: 'above'
            }
            df['position'] = df[positions].map(posMap)
    else:
        df['position'] = 'above'

    if not weights:
        df['weights'] = 0.1

    # connect the nodes
    for connection in df.iterrows():
        arcdiag.connect(
            connection[1][node1],
            connection[1][node2],
            linewidth=connection[1][weights],
            arc_position=connection[1]['position']
        )

    # custom colors
    arcdiag.set_background_color(bg_color)
    arcdiag.set_color_map(cmap)
    
    # plot the diagram
    arcdiag.show_plot()

createArcDiagram(
    df,
    node1='from',
    node2='to',
    weights='weights',
    positions='position',
    cmap='inferno'
)

Going further

This post explains how to create an arc diagram with the arcplot library.

You might be interested in:

Contact & Edit


👋 This document is a work by Yan Holtz. You can contribute on github, send me a feedback on twitter or subscribe to the newsletter to know when new examples are published! 🔥

This page is just a jupyter notebook, you can edit it here. Please help me making this website better 🙏!