Libraries & Dataset
Let's start by loading the necessary libraries and create a dataset
- matplotlib: for displaying the plot
- pandas: for data manipulation
numpy
: for data generation
# libraries
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# Create a dataset:
df = pd.DataFrame({
'x_values': range(1, 101),
'y_values': np.random.randn(100)*15+range(1, 101)
})
df.head()
x_values | y_values | |
---|---|---|
0 | 1 | 16.036968 |
1 | 2 | -11.666240 |
2 | 3 | 8.503309 |
3 | 4 | 7.816552 |
4 | 5 | -0.893881 |
Most simple scatter plot
This is a basic scatterplot example made with the scatter()
function of Matplotlib. These arguments are passed to the function:
x
: column name to be used for the x axisy
: column name to be used for the y axisdata
: the dataset to be usedlinestyle
: style of the lines between each pointmarker
: marker style of the points
fig, ax = plt.subplots()
ax.scatter(
'x_values', 'y_values',
data=df,
marker='o'
)
plt.show()
Going further
This post explains how to create a scatter plot with Matplotlib.
You might be interested in how to custom markers in scatter plots and how to link title and markers in scatter plots.