Let’s consider that you want to study the relationship between **2 numerical variables** with a lot of points. Then you can consider the number of points on each part of the plotting area and thus calculate a **2D kernel density estimate**. It is like a smoothed histogram. Instead of a point falling into a particular bin, it adds a weight to surrounding bins. This plot is inspired from this stack overflow question. See this page to custom the color palette.

```
# libraries
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import kde
# create data
x = np.random.normal(size=500)
y = x * 3 + np.random.normal(size=500)
# Evaluate a gaussian kde on a regular grid of nbins x nbins over data extents
nbins=300
k = kde.gaussian_kde([x,y])
xi, yi = np.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
zi = k(np.vstack([xi.flatten(), yi.flatten()]))
# Make the plot
plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='auto')
plt.show()
# Change color palette
plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='auto', cmap=plt.cm.Greens_r)
plt.show()
```

You can add a color bar easily using `colorbar()`

function.

```
# Add color bar
plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='auto', cmap=plt.cm.Greens_r)
plt.colorbar()
plt.show()
```