Control Color of Each Marker

logo of a chart:ScatterPlot

This post displays an example scatterplot built with seaborn to show how to control each marker's color by creating a new column in the dataset.

Select Dots to Color

Previous posts on controlling marker features and mapping categorical values to colors covered setting marker colors globally or by category.

Here, we'll demonstrate how to control each marker's color individually. This example uses a dataset with random points. To manage the colors, we add a column specifying the color for each marker (data point).

# libraries
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns

colors = ['#9b59b6', '#3498db']
 
# Create data frame with randomly selected x and y positions
df = pd.DataFrame(np.random.random((100,2)), columns=["x","y"])
 
# Add a column: the color depends on x and y values, but you can use any function you want
is_selected_dot = (df['x']>0.6) & (df['y']>0.6)
df['color']= np.where(is_selected_dot==True , colors[0], colors[1])
 
# plot
sns.set_style("darkgrid")
sns.scatterplot(
   data=df,
   x="x",
   y="y",
   color=df['color'],
   s=400,
   alpha=0.8,
)

plt.show()

Access more colors with pypalettes

You can easily way more palette colors with pypalettes. In this case we use the get_hex() function with the "Acadia" palette, and keep the first 2 colors of it.

If you haven't already, install this library with pip install pypalettes

# libraries
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
from pypalettes import get_hex

colors = get_hex("Acadia", keep_first_n=2)
 
# Create data frame with randomly selected x and y positions
df = pd.DataFrame(np.random.random((100,2)), columns=["x","y"])
 
# Add a column: the color depends on x and y values, but you can use any function you want
is_selected_dot = (df['x']>0.6) & (df['y']>0.6)
df['color']= np.where(is_selected_dot==True , colors[0], colors[1])
 
# plot
sns.set_style("darkgrid")
sns.scatterplot(
   data=df,
   x="x",
   y="y",
   color=df['color'],
   edgecolor="black",
   s=400,
   alpha=0.8,
)

plt.show()

Going further

This post explains how to customize the appearance of the markers in a scatter plot with seaborn.

You might be interested in

Contact & Edit


👋 This document is a work by Yan Holtz. You can contribute on github, send me a feedback on twitter or subscribe to the newsletter to know when new examples are published! 🔥

This page is just a jupyter notebook, you can edit it here. Please help me making this website better 🙏!